实际上,它们好久今后才被探测到。
1783年,剑桥的学监约翰・米歇尔在这个假定的根本上,于《伦敦皇家学会哲学学报》上颁发了一篇文章。
这对大质量恒星的终究归宿具有严峻的意义。如果一颗恒星的质量比昌德拉塞卡极限小,它最后会停止收缩,并且变成一种能够的终态即“白矮星”。白矮星的半径为几千英里,密度为每立方英寸几百吨。白矮星是由它物质中电子之间的不相容道理架空力支撑的。我们察看到大量如许的白矮星。环绕着天狼星转动的那颗是最早被发明的白矮星中的一个,天狼星是夜空中最亮的恒星。
朗道指出,恒星还存在另一种能够的终态。其极限质量约莫也为太阳质量的一倍或二倍,但是其体积乃至比白矮星还小很多。这些恒星是由中子和质子之间,而不是电子之间的不相容道理架空力支撑的。以是它们叫做中子星。它们的半径只要10英里摆布,密度为每立方英寸几亿吨。在第一次预言中子星时,没有任何体例去察看它。
现在,我们从奥本海默的事情中获得一幅如许的图象:恒星的引力场窜改了光芒在时空中的途径,使之和如果没有恒星环境下的途径不一样。光锥是表示闪光从其顶端收回后在时空中传播的途径。光锥在恒星大要四周略微向内弯折。在日蚀时察看从悠远恒星收回的光芒,能够看到这类偏折征象。跟着恒星收缩,其大要的引力场变得更强大,而光锥向内偏折得更多。这使得光芒从恒星逃逸变得更加困难,对于远处的察看者而言,光芒变得更暗淡更红。最后,当恒星收缩到某一临界半径时,大要上的引力场变得如此之强,使得光锥向内偏折得这么短长,乃至于光芒再也逃逸不出去 。按拍照对论,没有东西能行进得比光还快。如许,如果光都逃逸不出来,其他东西更不成能:统统东西都会被引力场拉归去。如许,存在一个事件的调集或时空地区,光或任何东西都不成能从该地区逃逸而达到远处的察看者。现在我们将这地区称作黑洞,将其鸿沟称作事件视界,而它和刚好不能从黑洞逃逸的光芒的那些途径相重合。