首页 > 时间简史 > 第10章 不确定性原理

我的书架

粒子间的干与征象,对于我们了解原子的布局至为关头,后者是作为化学和生物的基元,以及由之构成我们和我们四周统统统统的构件。在本世纪(即20世纪――编者注)初,人们以为原子和行星环绕着太阳公转相称近似,电子(带负电荷的粒子)环绕着带正电荷的中间的核公转。人们觉得正电荷和负电荷之间的吸引力保持电子的轨道,正如同行星和太阳之间的万有引力保持行星的轨道一样。费事在于,在量子力学之前,力学和电学的定律预言,电子会落空能量并以螺旋线的轨道落向并终究撞击到核上去。这表白原子(实际上统统的物质)都会很快地坍缩成一种非常高密度的状况。丹麦科学家尼尔斯・玻尔在1913年,为此题目找到了部分的解答。他提出,或许电子不能在离中间核肆意远的处所,而只能在一些指定的间隔处公转。如果我们再假定,只要一个或两个电子能在这些间隔上的任一轨道上公转,因为电子除了充满最小间隔和最小能量的轨道外,不能进一步向里螺旋靠近,这就处理了原子坍缩的题目。

如许,在充足高的频次下,辐射单个量子所需求的能量比所能获得的还要多。是以,在高频下的辐射减少了,如许物体丧失能量的速率就变成有限的了。

科学实际,特别是牛顿引力论的胜利,使得法国科学家拉普拉斯侯爵在19世纪初结论,宇宙是完整决定论的。

普通而言,量子力学并不对一次观察预言一个伶仃的肯定成果。取而代之,它预言一组能够产生的分歧成果,并奉告我们每个成果呈现的概率。也就是说,如果我们对大量近似的体系作一样的测量,每一个体系以一样的体例肇端,我们将会找到测量的成果为A呈现必然的次数,为B呈现另一分歧的次数,等等。人们能够预言成果为A或B的呈现的次数的近似值,但不能对个别测量的特定成果作出预言。因此量子力学把非预感性或随机性的不成制止身分引进了科学。固然爱因斯坦在生长这些看法时起了很高文用,但他非常激烈地反对这些。他之以是获得诺贝尔奖就是因为他对量子实际的进献。即便如许,他也从不接管宇宙受机遇节制的观点;他的情感能够用他闻名的断言来表达:“上帝不掷骰子。”但是,其他大多数科学家情愿接管量子力学,因为它和尝试合适得很完美。它的的确确成为一个极其胜利的实际,并成为几近统统当代科学技术的根本。它制约着晶体管和集成电路的行动,而这些恰是电子设备诸如电视、计算机的根基元件。它还是当代化学和生物学的根本。物理科学未让量子力学恰当连络出来的独一范畴是引力和宇宙的大标准布局。

因为量子力学引进的二重性,粒子也会产生干与。所谓的双缝尝试便是闻名的例子。考虑一个带有两个平行狭缝的隔板,在它的一边放上一个特定色彩(即特定波长)的光源。大部分光都射在隔板上,但是一小部分光通过这两条缝。现在假定将一个屏幕放到隔板的另一边。屏幕上的任何一点都能领遭到两个缝来的波。但是,普通来讲,光从光源通过这两条狭缝传到屏幕上的间隔是分歧的。这表白,从狭缝来的光达到屏幕之时不再是相互同相的:有些处所波相互抵消,其他处所它们相互加强,成果构成有亮暗条纹的特性花腔。

推荐阅读: 异界召唤之千古群雄     篮坛拳击手     科学家日记     重生之悠闲     永生轮回     冒牌魔王     狱鉴     道长,请收了我吧     霸总他不想离婚     我和大圣是兄弟     末日:我沉睡万年,世界崩坏了     帝少来袭,暖爱小娇妻    
sitemap