在这体例中,粒子不像在典范亦即非量子实际中那样,在时空中只要一个汗青或一个途径。相反,假定粒子从A到B可走统统能够的轨道。和每个途径相干存在一对数:一个数表示波的幅度;另一个表示在周期循环中的位置(即相位)。从A走到B的概率是将统统途径的波加起来。普通说来,如果比较一族邻近的途径,相位或周期循环中的位置会不同很大。这意味着,呼应于这些轨道的波几近都相互抵消了。但是,对于某些邻近途径的调集,它们之间的相位窜改不大,这些途径的波不会抵消。这类途径对应于玻尔的答应轨道。
科学实际,特别是牛顿引力论的胜利,使得法国科学家拉普拉斯侯爵在19世纪初结论,宇宙是完整决定论的。
对于最简朴的原子――氢原子,这个模型给出了相称好的解释,这里只要一个电子环绕着原子核活动。但人们不清楚如何将其推行到更庞大的原子上去。并且,可答应轨道有限调集的思惟仿佛显得非常肆意。量子力学的新实际处理了这一困难。本来一个环绕核活动的电子可被以为一个波,其波长依靠于其速率。对于必然的轨道,轨道的长度对应于整数(而不是分数)倍电子的波长。对于这些轨道,每绕一圈波峰总在同一名置,以是波就相互叠加;这些轨道对应于玻尔的可答应的轨道。但是,对于那些长度不为波长整数倍的轨道,当电子环绕着活动时,每个波峰将终究被波谷抵消;这些轨道是不答应的。
换言之,你对粒子的位置测量得越精确,你对速率的测量就越不精确,反之亦然。海森伯指出,粒子位置的不肯定性乘以粒子质量再乘以速率的不肯定性不能小于一个肯定量,该肯定量称为普朗克常量。并且,这个极限既不依靠于测量粒子位置和速率的体例,也不依靠于粒子的种类。海森伯不肯定性道理是天下的一个根基的不成躲避的性子。
为了制止这明显荒诞的成果,德国科学家马克斯・普朗克在1900年提出,光波、X射线和其他波不能以肆意的速率辐射,而只能以某种称为量子的波包发射。别的,每个量子具有肯定的能量,波的频次越高,其能量越大。
如许,在充足高的频次下,辐射单个量子所需求的能量比所能获得的还要多。是以,在高频下的辐射减少了,如许物体丧失能量的速率就变成有限的了。
不肯定性道理对我们的天下观有非常深远的影响。乃至到了70多年以后,很多哲学家还不能充分观赏它,它仍然是很多争议的主题。不肯定性道理使拉普拉斯的科学实际,即一个完整决定性论的宇宙模型的胡想寿终正寝:
量子假定能够非常胜利地解释所观察到的热体的辐射发射率,但直到1926年另一名德国科学家威纳・海森伯提出闻名的不肯定性道理以后,人们才认识到它对决定性论的含义。为了预言一个粒子将来的位置和速率,人们必须能够精确地测量它现在的位置和速率。显而易见的体例是将光照到这粒子上。一部分光波被此粒子散射开来,由此指明它的位置。但是,人们不成能将粒子的位置肯定到比光的两个波峰之间间隔更小的程度,所觉得了切确测量粒子的位置,必须用短波长的光。但是,由普朗克的量子假定,人们不能用肆意小量的光;人们起码要用一个光量子。